HYB.R.ID SEAR(H

Apr 16, 2025

http://softwaredoug.com

Obligatory Bio Slide

“Y Hi I’m Doug
(@softwaredoug everywhere)

I blog here: http://softwaredoug.com

& c 25 softwaredoug.com

N

DOUG TURNBULL

Dad.

Search@Reddit. Author.

Search

Doug Turnbull's Blog

APRIL 8TH, 2025

An LLM Query Understanding Service

LLMs turn query understanding from complex, multi-month project to days

APRIL 2ND, 2025

All search is structured now

There's no excuse for unstructured search queries in the age of LLMs

MARCH 28TH, 2025

Al Brainrot means developer opportui

Al makes us lazier - today's inconveniences feel excrutiating enough to pay for them

http://softwaredoug.com

Obligatory Plug

Al Evals For Engineers Cheat at Search with LLMs

NEW - 4 WEEKS - COHORT-BASED COURSE NEW - 4 WEEKS - COHORT-BASED COURSE

Learn proven approaches for quickly improving Al applications. Vibe-code your way to Al-Powered Search
Build Al that works better than the competition, regardless of the
use-case. This course is popular

9 people enrolled last week.

This course is popular
HOSTED BY
22 people enrolled last week.

) Doug Turnbull
HOSTED BY Led Search Reddit + Shopify. Wrote Relevant Search + Al Powered Search

Hamel Husain and Shreya Shankar
e ML Engineers who've spent 25+ combined years building &

evaluating Al systems.

Obligatory Plug

https://maven.com/softwaredoug/cheat—-at-search
Discount Code: searchybird good through Apr

https://maven.com/softwaredoug/cheat-at-search

Can’t cover in 45 mins...

1. How lexical search actually works (ask chat GPT about:
inverted index, read “Relevant Search” &)

2. What is an embedding

3. Lexical scoring, vector scoring (cosine, euclidean, etc
similarities) etc

Intuitive sense of “close” good enough for today :)

Also won’t cover

1. RRF - Reciprocal Rank Fusion

RRF is Not Enough

NOVEMBER 3RD, 2024

Hybrid search means combining lexical and vector search results into one result listing.
“We’ll just use Reciprocal Rank Fusion” I’'m sure I've said from time to time.

As if RRF is kind of “a miracle occurs”. You get the best of both worlds, and suddenly your
search looks incredible.

Take the query hello to the planet. Let’s say we start with reasonable results from a vector
search system (follow along in this notebook)

vector_sim texts vector_rank

Assumption: embeddings good first pass search

Embeddings get you close but not all the way

Title

mary had a little lamb
mary had a little ham
a little ham

little mary had a scam

ham it up with mary

Little red riding hood had a

baby sheep?

Vector (2567 512? Or more dimensions)
[0.9, 0.8, -0.5, 0.75, ..]
[0.6, 0.4, -0.4, 0.60, ..]

[-0.2, 0.5, 0.9, -0.45, ..]

[0.4, -0.5, 0.25, 0.14, ..] Similar!

[0.2, 0.5, 0.2, 0.45, ..] (despite
sharing few

[0.95, 0.79, -0.49, 0. 1 rerms)

Chunked

You’ve chunked your data into a meaningful “search
document” with important metadata:

“Book_title”: “Nursery Rhymes”

“Section”: “Mary Had a Little
Lamb”

“Text?: “...”

Embedding for whole document

We want an embedding capturing as much of the document as
is reasonable

text_concatted = datal'product_name']l + ' —— ' + datal'product_description’]

embedding = model.encode(text_concatted)

(Not just a title embedding)

Embedding is ~ two-towerable

Short text (ie queries) and long text (paragraphs) can be

mapped in similarity space

QUERY: Kid story
about sheep \\\\\\\ ///////////

Similar

Document:

Mary had a little lamb, little
lamb, little lamb.

Mary had a little lamb, its
fleece was white as snow.

And everywhere that Mary went.
Mary went. Mary went.

And everywhere that Mary went,
the lamb was sure to go.

It followed her to school one
day, school one day, school one

Bonus: embedding is a two tower model!

Query Features Document Features

Query embedding
Query
° Name
° Description
° Product image embedding
° 2?22

(Biencoder,
learned on
labeled data)

After embedding we boost/rerank/...

Exact name match? Query mentions color?
e Move these to the e Ensure color matches
top! boosted
Query Understanding

Home About

(Different query

<> Pinned

£ Daniel Tunkelang t y p e S -

Query Understanding: An Introduction d -| f f eren t

Search engines are so core to our digital experience that we take

them for granted. Most of us cannot remember the web without... o t r e a t m e n t S |)
L]

Dec2,2023 N 242 E:

http://quervunderstanding.com

http://queryunderstanding.com

Ideal:

Query
Understanding

=

First Pass
Embeddings

=

Boost /
Rerank

(depending on needs of
query)

Reality:

|

Query
Understanding

|

=]

Like ~top 100
embeddings

|

=]

Boost /
Rerank

|

Reality:

Query
Understanding

=

Like ~top 100
embeddings

=

Boost /
Rerank

(Do we have the right
top 100 to boost?)

Reality:

Query Like ~top 100 Boost /
Understanding embeddings Rerank

Need to filter this to
“good” 100 or so

Chicken and egg problem:
[Undeggi;zding} ::>£L-iekmebe~dtdo'ipnglseel :>[BRoeorsatnk/ }

If I want to boost
exact product name
matches here..

Chicken and egg problem:
[Undeggi;zding} ::>£L-iekmebe~dtdo'ipnglseel :>[BRoeorsatnk/ }

The good product name
matches better be 1in
the candidates!

~2021 vector DB

No WHERE!

SELECT % FROM <search_engine> $ Can’t guarantee
product name matches
promoted

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

2025 vector DB (search engine)

BEFORE vector_similarity

Get candidates matching
SELECT * FROM <search> “trowel?”

WHERE [trowel] 1in product_name
4 Now I have matches!

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

~2025 era vector DB (search engine)

BEFORE vector_similarity
Get candidates matching

SELECT * FROM <search> //////// ¢¢m2“,yaa

WHERE [trowel] 1in product_name
& How does your vector DB

L —

pre-filter? Can you do this
at scale?

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

... and “where” could be anything

Search for “garden trowel?”

SELECT * FROM <search>
WHERE “lawn_and_garden” 1in department Somehow we turn the query

/////// to this dept / item type

AND (garden 1in title OR garden 1in description OR

AND “trowel” 1in item_type

trowel in title OR trowel in description)

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

... and “where” could be anything

Search for “garden trowel?”

SELECT * FROM <search>
WHERE “lawn_and_garden” 1in department

AND “trowel” 1in item_type And also match
query terms 1n
tokenized
title/description

AND (garden in title OR garden in description OR ——
trowel in title OR trowel in description)

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

... and “where” could be anything

Search for “garden trowel?”

SELECT * FROM <search>

WHERE “lawn_and_garden” 1in department
AND “trowel” {in qitem_type And also match
______— query terms

(yes you search nerds,
I’m ignoring BM25 and
lexical scoring for now)

AND (garden 1in title OR garden 1in description OR
trowel in title OR trowel in description)

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

Practically: there’s a vector index

We can reasonably get top K...

Search for “garden trowel?”

SELECT * FROM <search>
WHERE “lawn_and_garden” in department
AND “trowel” 1in item_type
AND (garden in title OR garden in description OR
trowel in title OR trowel 1in description) Get top 100 from

ORDER BY vector_similarity(query_embedding, title_embedding) this set via an

LIMIT 100 index

(otherwise we scan all
results to score them)

There’s more than one “top K” we care about

What about “pure” vector
matches?

SELECT * FROM <search>
WHERE “lawn_and_garden” in department
AND “trowel” in item_type

AND (garden in title OR garden in description OR

trowel in title OR trowel 1in description) “*——-________§--~§-~ .
100 from this set

ORDER BY similarity(query_embedding, title_embedding)
LIMIT 100

UNION ALL

SELECT * FROM <search>

WHERE “lawn_and_garden” 1in department
AND “trowel” 1in -Htem_type

ORDER BY similarity(query_embedding, title_embedding)
LIMIT 100

There’s more than one candidate set

What about “pure” vector
matches?

SELECT * FROM <search>
WHERE “lawn_and_garden” in department
AND “trowel” in item_type
AND (garden in title OR garden in description OR
trowel in title OR trowel 1in description)

ORDER BY similarity(query_embedding, title_embedding)
LIMIT 100

UNION ALL — 4+ 100 from this set
SELECT * FROM <search>
WHERE “lawn_and_garden” 1in department

AND “trowel” 1in -Htem_type

ORDER BY similarity(query_embedding, title_embedding)
LIMIT 100

With squiggly lines...

Candidate
Set A

(lexically Boost

filtered) (candidates lexical
odeneaiby matches?
vector sim)

Candidate

Set B (pure

vector)

Why do we do it this way?

Should we just get these?

Candidate

Set A
(lexically Boost
filtered) (candidates lexical

ordered by
vector sim)

matches?

Why do we do it this way?

Should we just get these?

(Higher precision / lower recall)

Candidate
Set A
(lexically
filtered) (candidates

ordered by
vector sim)

Boost
lexical

matches?

Candidate
Set B (pure
vector)

(Higher recall / lower precision)

With squiggly lines...

LO Retrieval L1 Ranking
Candidate
Set A Some
(filtered reranker, Hoke
to lexical) (candidates boosting, :> rankers /
ordered by S o e post-filter
vector sim) S
g, etc
Candidate
Set B (pure
// vector)

A retrieval “Arm?”

And many retrieval arms

Candidate
Arm E (just
lexical
scores)
(Candidate
Arm A (one
term Some
__matches) J reranker, More
(candidates boosting, rankerfs /
[Candidate ordered by tie-breakin post-filter
Arm B (all vector sim) g, etc s
terms

_ match) J

Candidate
Arm C (same Candidate
category as Arm D
query) (image

embedding)

Or depending on the query

" Candidate

Arm A (one
term Some
__matches) J reranker, More
(candidates boosting, rankers /
[Candidate ordered by tie-breakin post-filter
Arm B (all vector sim) g, etc s
terms

_ match) J

Candidate
Arm D
(image

embedding)

Then the boost

" Candidate

Arm A (one e \\

term
__ matches) J

(candidates Scoge : index [16_matches]
. product_name_Tindex _matches|.score
é Candidate) ordered by (“garden trowel”)
Arm B (all vector sim)

terms \\ //

____match) J

Candidate
Arm D
(image

embedding)

Or a model

(" Candidate
Arm A (one
term
__matches)

Ranking model
given query +

(candidates

" Candidate ;zg&;?i:ﬁg document
Arm B (all features
terms

____match) J

Candidate
Arm D
(image

embedding)

That’s the theory at least

Were it so easy...

https://colab.research.google.com/drive/1HmWdKON-wxHMQCnigOhVA3u®-0X1I2Ph

https://colab.research.google.com/drive/1HmWdKON-wxHMQCnig0hVA3u0-OX1I2Ph

