
© Doug Turnbull (http://softwaredoug.com), all opinions my own, not my employer

Hybrid Search
Apr 16, 2025

Optimizing the R in RAG

http://softwaredoug.com

Obligatory Bio Slide
󰗞 Hi I’m Doug
(@softwaredoug everywhere)

I blog here: http://softwaredoug.com

http://softwaredoug.com

Obligatory Plug

Obligatory Plug
https://maven.com/softwaredoug/cheat-at-search
Discount Code: searchybird good through Apr

https://maven.com/softwaredoug/cheat-at-search

Can’t cover in 45 mins…
1. How lexical search actually works (ask chat GPT about:

inverted index, read “Relevant Search” 😉)

2. What is an embedding

3. Lexical scoring, vector scoring (cosine, euclidean, etc
similarities) etc

Intuitive sense of “close” good enough for today :)

Also won’t cover
1. RRF - Reciprocal Rank Fusion

Assumption: embeddings good first pass search

Embeddings get you close but not all the way

ID Title Vector (256? 512? Or more dimensions)

0 mary had a little lamb [0.9, 0.8, -0.5, 0.75, ..]

1 mary had a little ham [0.6, 0.4, -0.4, 0.60, ..]

2 a little ham [-0.2, 0.5, 0.9, -0.45, ..]

3 little mary had a scam [0.4, -0.5, 0.25, 0.14, ..]

4 ham it up with mary [0.2, 0.5, 0.2, 0.45, ..]

5 Little red riding hood had a
baby sheep?

[0.95, 0.79, -0.49, 0.65, ..]

Similar!
(despite
sharing few
terms)

Chunked
You’ve chunked your data into a meaningful “search
document” with important metadata:

📕 {
“Book_title”: “Nursery Rhymes”
“Section”: “Mary Had a Little
Lamb”
“Text”: “...”

}

Embedding for whole document
We want an embedding capturing as much of the document as
is reasonable

(Not just a title embedding)

Embedding is ~ two-towerable
Short text (ie queries) and long text (paragraphs) can be
mapped in similarity space

QUERY: Kid story
about sheep

Document:

Mary had a little lamb, little
lamb, little lamb.

Mary had a little lamb, its
fleece was white as snow.

And everywhere that Mary went.
Mary went. Mary went.

And everywhere that Mary went,
the lamb was sure to go.

It followed her to school one
day, school one day, school one
day. It followed her to school
one day, which was against the
rule. It made the children laugh
and play, laugh and play, laugh
and play. It made the children
laugh and play to see the lamb
at school. And so the teacher
sent it out, sent it out, sent
it out. And so the teacher sent
it out, but still it lingered
near. It stood and waited round
about, round about, round about.
It stood and waited round about,
till Mary did appear. “Why does
the lamb love Mary so, Mary so,
Mary so? Why does the lamb love
Mary so?” the little children
cry.

Similar

Bonus: embedding is a two tower model!

Query Features Document Features

(Biencoder,
learned on
labeled data)

● Name
● Description
● Product image embedding
● ???

● Query embedding
● Query

After embedding we boost/rerank/…
Exact name match?

● Move these to the
top!

Query mentions color?

● Ensure color matches
boosted

http://queryunderstanding.com

(Different query
types ==
different
treatments!)

http://queryunderstanding.com

Ideal:

Query
Understanding

First Pass
Embeddings

Boost /
Rerank

(depending on needs of
query)

Reality:

Query
Understanding

Like ~top 100
embeddings

Boost /
Rerank

Reality:

Query
Understanding

Like ~top 100
embeddings

Boost /
Rerank

(Do we have the right
top 100 to boost?)

Reality:

Query
Understanding

Like ~top 100
embeddings

Boost /
Rerank

Need to filter this to
“good” 100 or so

Chicken and egg problem:

Query
Understanding

Like ~top 100
embeddings

Boost /
Rerank

If I want to boost
exact product name
matches here..

🐓🥚

Query
Understanding

Like ~top 100
embeddings

Boost /
Rerank

The good product name
matches better be in
the candidates!

Chicken and egg problem:
🐓🥚

~2021 vector DB

SELECT * FROM <search_engine>

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

No WHERE!

👎 Can’t guarantee
product name matches
promoted

2025 vector DB (search engine)

SELECT * FROM <search>

WHERE [trowel] in product_name

 ...

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

BEFORE vector_similarity
Get candidates matching
“trowel”

👍 Now I have matches!

~2025 era vector DB (search engine)

SELECT * FROM <search>

WHERE [trowel] in product_name

 ...

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

BEFORE vector_similarity
Get candidates matching
“mary”

🚨 How does your vector DB
pre-filter? Can you do this
at scale?

… and “where” could be anything

SELECT * FROM <search>

WHERE “lawn_and_garden” in department

 AND “trowel” in item_type

 AND (garden in title OR garden in description OR

 trowel in title OR trowel in description)

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

Search for “garden trowel”

Somehow we turn the query
to this dept / item type

… and “where” could be anything

SELECT * FROM <search>

WHERE “lawn_and_garden” in department

 AND “trowel” in item_type

 AND (garden in title OR garden in description OR

 trowel in title OR trowel in description)

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

Search for “garden trowel”

And also match
query terms in
tokenized
title/description

… and “where” could be anything

SELECT * FROM <search>

WHERE “lawn_and_garden” in department

 AND “trowel” in item_type

 AND (garden in title OR garden in description OR

 trowel in title OR trowel in description)

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

Search for “garden trowel”

And also match
query terms
(yes you search nerds,
I’m ignoring BM25 and
lexical scoring for now)

Practically: there’s a vector index

SELECT * FROM <search>

WHERE “lawn_and_garden” in department

 AND “trowel” in item_type

 AND (garden in title OR garden in description OR

 trowel in title OR trowel in description)

ORDER BY vector_similarity(query_embedding, title_embedding)
LIMIT 100

Search for “garden trowel”

Get top 100 from
this set via an
index
(otherwise we scan all
results to score them)

We can reasonably get top K...

There’s more than one “top K” we care about

SELECT * FROM <search>

WHERE “lawn_and_garden” in department

 AND “trowel” in item_type

 AND (garden in title OR garden in description OR

 trowel in title OR trowel in description)

ORDER BY similarity(query_embedding, title_embedding)
LIMIT 100

UNION ALL

SELECT * FROM <search>

WHERE “lawn_and_garden” in department

 AND “trowel” in item_type

ORDER BY similarity(query_embedding, title_embedding)
LIMIT 100

What about “pure” vector
matches?

100 from this set

There’s more than one candidate set
SELECT * FROM <search>

WHERE “lawn_and_garden” in department

 AND “trowel” in item_type

 AND (garden in title OR garden in description OR

 trowel in title OR trowel in description)

ORDER BY similarity(query_embedding, title_embedding)
LIMIT 100

UNION ALL

SELECT * FROM <search>

WHERE “lawn_and_garden” in department

 AND “trowel” in item_type

ORDER BY similarity(query_embedding, title_embedding)
LIMIT 100

What about “pure” vector
matches?

+ 100 from this set

With squiggly lines…

Candidate
Set A

(lexically
filtered)

Candidate
Set B (pure
vector)

(candidates
ordered by
vector sim)

Boost
lexical
matches?

Why do we do it this way?

Candidate
Set A

(lexically
filtered)

Candidate
Set B (pure
vector)

(candidates
ordered by
vector sim)

Boost
lexical
matches?

Should we just get these?

Why do we do it this way?

Candidate
Set A

(lexically
filtered) (candidates

ordered by
vector sim)

Boost
lexical
matches?

Should we just get these?

(Higher precision / lower recall)

Candidate
Set B (pure
vector)

(Higher recall / lower precision)

With squiggly lines…

Candidate
Set A

(filtered
to lexical)

Candidate
Set B (pure
vector)

(candidates
ordered by
vector sim)

Some
reranker,
boosting,
tie-breakin

g, etc

L0 Retrieval L1 Ranking

…

More
rankers /
post-filter

s

A retrieval “Arm”

And many retrieval arms

Candidate
Arm A (one

term
matches)

Candidate
Arm C (same
category as

query)

(candidates
ordered by
vector sim)

Some
reranker,
boosting,
tie-breakin

g, etc

…

More
rankers /
post-filter

s
Candidate
Arm B (all

terms
match)

Candidate
Arm D
(image

embedding)

Candidate
Arm E (just
lexical
scores)

Or depending on the query

Candidate
Arm A (one

term
matches)

Candidate
Arm C (same
category as

query)

(candidates
ordered by
vector sim)

Some
reranker,
boosting,
tie-breakin

g, etc

…

More
rankers /
post-filter

s
Candidate
Arm B (all

terms
match)

Candidate
Arm D
(image

embedding)

Candidate
Arm E (just
lexical
scores)

Then the boost

Candidate
Arm A (one

term
matches)

Candidate
Arm C (same
category as

query)

(candidates
ordered by
vector sim)

Candidate
Arm B (all

terms
match)

Candidate
Arm D
(image

embedding)

Candidate
Arm E (just
lexical
scores)

score +=
product_name_index[l0_matches].score
(“garden trowel”)

Or a model

Candidate
Arm A (one

term
matches)

Candidate
Arm C (same
category as

query)

(candidates
ordered by
vector sim)

Candidate
Arm B (all

terms
match)

Candidate
Arm D
(image

embedding)

Candidate
Arm E (just
lexical
scores)

Ranking model
given query +

document
features

That’s the theory at least

https://colab.research.google.com/drive/1HmWdKON-wxHMQCnig0hVA3u0-OX1I2Ph

https://colab.research.google.com/drive/1HmWdKON-wxHMQCnig0hVA3u0-OX1I2Ph

